An explicit upper bound for the least prime ideal in the Chebotarev density theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular Forms and the Chebotarev Density Theorem

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...

متن کامل

A motivic Chebotarev density theorem

We define motivic Artin L-functions and show that they specialize to the usual Artin L-functions under the trace of Frobenius. In the last section we use our L-functions to prove a motivic analogue of the Chebotarev density theorem.

متن کامل

an investigation in the deformation zone of the ecae process by the upper bound theorem

in the present paper, the deformation zone of the ecae (equal channel angular extrusion) process was investigated using the upper bound theorem. for this purpose, the shape of the streamlines in the deformation zone was assumed to be cubic bezier curves. then, the force required for the ecae process was optimized with regard to the parameters defining the shape of streamlines by the upper bound...

متن کامل

An Upper Bound on the Least Inert Prime in a Real Quadratic Field

It is shown by a combination of analytic and computational techniques that for any positive fundamental discriminant D > 3705, there is always at least one prime p < p D=2 such that the Kronecker symbol (D=p) = ?1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Fourier

سال: 2019

ISSN: 1777-5310

DOI: 10.5802/aif.3274